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1 Introduction

Mental health is a fundamental component of health and well-being (La Placa et al.,
2013; Organization, 1948) but over the last 30 years, mental illnesses have become
among the highest burdens worldwide (Friedrich, 2017; Liu et al., 2020). This change
may, at least partially, be explained by rapid urbanisation (Penkalla & Kohler, 2014). As
of 2018 over half of the world’s population lives in urban settlements and by 2030 this
proportion is estimated to increase to 60% (United Nations, 2018). Five decades ago,
only three megacities (>10 million inhabitants) existed: Tokyo, Osaka and New York.
As of 2018, there were 33 megacities and by 2030 there will be 43 (United Nations,
2018).

Even though urban areas have the potential to support health (Lennard, 2018; Mil-
gram, 1970), studies suggest that these areas undermine mental health by promoting
disconnectedness from nature (Hartig & Kahn, 2016; Soga & Gaston, 2016; Turner
et al., 2004). Increased air and noise pollution, heat islands, lack of green space and
sedentary behaviour are a few of the many issues created by urban environments.
Furthermore, there is considerable variation in the levels of such environmental ex-
posures within and between cities (Nieuwenhuijsen, 2016). With rapid urbanisation it
seems important to improve our understanding about the effects of urban environments
on mental health, to support mental health as an ecosystem service (Bratman et al.,
2019).

The connection between mental health and the natural environment is widely recog-
nised (Kondo et al., 2018; Moore et al., 2018; Moreira et al., 2021; White et al., 2021;
Zhang et al., 2021). Several reviews have shown that residential greenness (i.e. overall
vegetation) and green spaces such as parks, community gardens or forests (hence-
forth both types of urban nature are generalised as “greenspace”; Taylor and Hochuli,
2017) may have positive effects on a variety of health-related measures (e.g. Dad-
vand et al., 2016; Dzhambov et al., 2014; Markevych et al., 2017; Rautio et al., 2017).
Previous studies have identified neighbourhood greenspace exposure with lower levels
of symptomatology for depression, anxiety and stress (Beyer et al., 2014), improved
sleep (Grigsby-Toussaint et al., 2015) and improved mental wellbeing (Houlden et al.,
2019). However, some studies also found mixed (Dzhambov et al., 2018; White et
al., 2017), weak or insignificant results (Huynh et al., 2013; White et al., 2013). The
inconsistencies in the literature can, at least partially, be explained due to a lack of con-
sensus regarding spatial methods for measuring and modelling greenspace exposure
and their pathways (Davis et al., 2021; Dzhambov et al., 2020; Giles-Corti et al., 2018;
Labib et al., 2020a). Furthermore, studies often use different types of greenspace ex-
posures (e.g. greenspace visibility or access to parks) that might have different effects
on mental health. A deeper understanding of these factors is needed for providing spe-
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cific recommendations for decision makers and urban designers (Davis et al., 2021;
Koohsari et al., 2015).

In a recent study by Labib et al. (2021b), the authors introduced a multiple greenspace
exposure framework to address the aforementioned concerns. In this framework three
types of greenspace (i.e. availability, visibility, and accessibility of greenspace) were
joined in a Composite Greenspace Exposure Index (CGEI). This novel index differs
from traditional single exposure metrics in that it integrates multiple types of greenspace
to capture contact to nature holistically and objectively. However, as of now there has
been no study to apply this novel index on individual-level data. Furthermore, there are
no recommendations on how to parameterise the different single greenspace layers of
the CGEI in the context of mental health. Therefore, this study aims to calculate the
CGEI for Vancouver, Canada, to investigate associations between contact to nature
and depressive symptoms.
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2 Background

2.1 Potential underlying pathways linking greenspace to health

In the context of this study, the term pathway describes underlying biopsychosocial
mechanisms that can lead to health benefits. As there are a manifold of potential
pathways (e.g. Dadvand and Nieuwenhuijsen, 2019; Hartig et al., 2014) Markevych
et al. (2017) provide an organisational approach (Fig. 1), which emphasises three
general mechanisms of greenspace: reducing harm, restoring capacities and building
capacities. In the following I provide a brief overview of pathways within each domain.

Greenspace

Restoring capacities
(Restoration)

For example,
attention restoration
and stress recovery

Reducing harm
(Mitigation)

For example,
reducing exposure to 

environmental stressors – air 
pollution, noise and heat

Building capacities
(Instoration)

For example,
encouraging physical activity 

and facilitating social cohesion

General and mental Health

For example,
improved self-perceived health and 

well-being, lower risk for cardiovascular 
disease, mental illnesses and all cause 

mortality

Figure 1 Conceptualisation of pathways linking multiple greenspace exposures to
positive health outcomes. The arrows represent hypothetical relationships between
greenspace, specific pathways and health outcomes (Figure adapted from Fig 1. in
Markevych et al., 2017).

2.1.1 Reducing harm (Mitigation)

Urban environments provide potentially harming effects like air pollution, high air
temperature and noise through traffic (Dadvand & Nieuwenhuijsen, 2019). Researchers
have found that air pollutant concentrations are lower near greenspace (e.g. Nowak et
al., 2014). One reason for this is that plants remove pollutants from the air through
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stomatal uptake or non-stomata deposition on the plants surfaces (Givoni, 1991; Pao-
letti et al., 2011). As a consequence, traffic-related air pollution is lower in areas with
high levels of greenspace. Furthermore, studies have shown that levels of traffic-
related air pollution are lower with proximity to urban parks, and in residential areas
and schools with higher surrounding greenspace (Dadvand et al., 2012; Dadvand et
al., 2015; Su et al., 2011). Studies also demonstrate the impact of air pollution on
mental disorders such as depression (Ali & Khoja, 2019) and cognitive development in
children (Dadvand et al., 2015).

Urban features like high-rise buildings, industry, traffic or the use of materials such
as concrete lead to an increase in air-temperature. This effect is called urban heat
island (Heaviside et al., 2017). It is typically attributed to the replacement of vegetation
with such man-made features, which absorb more sunlight, causing a local enhance-
ment in the urban heat budget, as well as reducing wind speed (Phelan et al., 2015;
Voogt & Oke, 2003). Exposure to heat is associated with an increase in hospitalisation
rates and death (Basu, 2009) and enhances other causes such as respiratory illness
(D’Ippoliti et al., 2010). While extreme heat events are associated with higher rates of
emergency department visits due to mental health-related conditions, the link between
elevated temperature and specific mental health conditions remains poorly understood
(Nori-Sarma et al., 2022).

Research about the effects of greenspace on reducing traffic noise has limited and
mixed evidence (Dadvand & Nieuwenhuijsen, 2019). Vegetation builds a physical bar-
rier which has the potential of reducing noise levels by 5-10 dB through absorption or
diffraction of sound waves (Van Renterghem et al., 2015). However, in some cases
such as street canyons, this barrier may actually increase pedestrian level noise expo-
sure by reflecting the sound waves (Jang et al., 2015). Exposure to noise has been
associated with several health effects such as cardiovascular disease, metabolic dis-
orders, or cognitive impairment (Basner et al., 2014). While there are some studies
that analyse the effects of residential greenspace on noise and sleep quality (e.g. Xie
et al., 2020), further research explicitly analysing how noise mediates the associations
between greenspace and mental health is needed (Markevych et al., 2017).

2.1.2 Restoring capacities (Restoration)

Numerous experiments and observations show that exposure to green spaces can
significantly lower stress and restore cognitive function. The stress reduction theory
suggests that natural environments promote reduction in stress. In the context of
the theory of evolution, landscapes with water or vegetation have been seen as safe
havens. Therefore, seeing or being present in such environments produces affective
reactions that lead to stress reducing effects (Ulrich, 1981; Ulrich et al., 1991).
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The attention restoration theory proposes that exposure to nature has the potential
to restore the mind’s ability to actively focus. In the context of this theory there are two
types of attention: directed attention is required to (actively) focus on cognitive stimuli.
After prolonged use, we suffer from “attention fatigue”. Involuntary attention on the
other hand describes indirect (i.e. effortless) attention utilising cognitive faculties not
normally used, therefore allowing the neural mechanisms underlying directed attention
to restore. There are four essential components an environment must contain for it to
promote involuntary attention: (1) being away which describes opportunities to gain
distance from thoughts and concerns. (2) soft fascination refers to stimuli that hold
human attention effortlessly. The (3) extent describes the scope of the experience and
the possibility of feeling immersed within it, and (4) compatibility of an environment so it
may provide a “match” between the individual needs and desires and the environment.
Natural environments usually contain all components simultaneously, therefore provid-
ing the possibility of directed attention restoration (Kaplan & Kaplan, 1989). These
pathways have been shown to act as beneficial influences of greenspace on mental
health (Dadvand et al., 2016).

2.1.3 Building capacities (Instoration)

Greenspace is likely to build capacities for example through facilitating social co-
hesion and encouraging physical activity. Social cohesion within a neighbourhood
describes a feeling of belonging, respect of each other and safety. As residential
greenspace such as parks provide opportunities for social contact it is likely to in-
crease social cohesion (Holtan et al., 2014; Weinstein et al., 2015). Research shows
that strengthening social cohesion within the neighbourhood could reduce poor mental
health and increase wellbeing (Fone et al., 2014; Williams et al., 2020), reduce nega-
tive effects on adolescent mental health following stressful life events (Kingsbury et al.,
2019) and improve general health (Dadvand et al., 2016). However, not all greenspace
has the same effect on social cohesion. In this context, parks for example with op-
portunities for social contact are different to an isolated forest path. Therefore, more
refined greenspace measures are required (Markevych et al., 2017).

In addition to increased social cohesion, greenspace is also likely to increase and
improve the benefits of physical activity (Duncan et al., 2014; Lachowycz & Jones,
2011; McGrath et al., 2015). Previous studies suggest that physical activity may play
an important role in the management of mental health diseases and improve wellbeing
(Biddle et al., 2003; Paluska & Schwenk, 2000). In accord with these findings, studies
show that “green exercise” has greater psychological benefits compared to the same
exercise settings with relatively little greenspace (Mitchell, 2013; Pretty et al., 2005).
However, as it is the case for social cohesion, not all greenspace has the same effects
on physical activity and mental health. The sole availability of greenspace (e.g. vege-
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tation in backyards) is likely to be a poor indicator for opportunities of "green exercise".
Therefore, more refined characteristics such as size and good access to public parks
are necessary to analyse associations of greenspace with physical activity such as
recreational walking (Giles-Corti et al., 2005).

2.2 Multiple Greenspace Exposure Framework

Although most individual-level studies have focused on one particular pathway from
nature to health, it is clear that multiple pathways are likely to be engaged simultane-
ously and affect one another (Hartig et al., 2014; Markevych et al., 2017). For example,
people entering a park for social cohesion purposes generally need to engage in some
form of physical activity to do so. Previous studies often consider only one of multiple
possible greenspace exposures (e.g. overall greenness or distance to parks) when
analysing the connection between health and the natural environment (Hoffimann et
al., 2017; Schüle et al., 2017).

As contact with nature is invariably integrated into a complex web of health deter-
minants, accounting for multiple exposures addresses this complexity (Frumkin et al.,
2017). For that purpose in this study a multiple greenspace exposure framework has
been used accounting for availability, visibility, and accessibility of greenspace (Fig. 2)
(Dadvand & Nieuwenhuijsen, 2019; Labib et al., 2021b) representing the most com-
monly used spatial measures of greenspace exposure (Labib et al., 2020a).

AccessibilityVisibilityAvailability ca b

Figure 2 A schematic illustration of the multiple greenspace exposure framework
(Figure adapted from Fig 1. in Labib et al., 2021b).

2.2.1 Availability

Availability of greenspace (Fig. 2a) describes the physical amount of vegetation.
Typically it is estimated by simple map-bound 2D buffer analysis around the home or
work place using remote sensing data. Indices such as the Normalised Difference
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Vegetation Index (NDVI) to measure the photosynthetically active vegetation or Land
Use Land Cover (LULC) maps to quantify the percentage of green land cover are com-
monly used (Labib et al., 2020a). To account for seasonal effects and different quali-
ties of greenspace which can be measured using different vegetation indices, previous
studies suggest using multiple remote sensing products at different scales when mea-
suring greenspace availability (Labib et al., 2020b; Markevych et al., 2017). The sole
availability of residential greenspace is relevant for all three domains explained in 2.1.
However, it plays an especially important role when accounting for mitigation pathways
(reducing harm) (Markevych et al., 2017).

2.2.2 Visibility

Visibility of greenspace (Fig. 2b) describes the visual amount of greenspace that
can be seen from an eye-level perspective of a study participant. One methodology to
estimate the exposure to visible greenspace describes using Street View (SV) images
(e.g., Google Street View, Baidu Street View). While this method is most commonly
used in the literature it has several shortcomings, such that SV images are typically
limited to roads accessible by car and seasonal inconsistency between SV images
(Li et al., 2015). Furthermore, it is still difficult to accurately classify vegetation from
SV images due to many factors, such as shadows and confusion between human
made green features and vegetation (Li et al., 2015). Geographic Information System
(GIS) based viewshed analysis describes an alternative method for calculating eye-
level greenness visibility. Recent studies have demonstrated the use of city-wide scale
viewshed-based greenness visibility as a highly accurate alternative to SV-based visual
exposure (Cimburova & Blumentrath, 2022; Labib et al., 2021a; Tabrizian et al., 2020).
Such methodologies are not dependent on the availability of SV-images and recent
work has improved computation time so that the analysis of visible greenspace can be
scaled to large areas with little effort (Brinkmann et al., 2022). Greenspace visibility
measurements are relevant when accounting for the restoration pathways (restoring
capacities) (Markevych et al., 2017).

2.2.3 Accessibility

Accessibility of greenspace (Fig. 2c) describes the physical and legal access to
greenspaces such as parks, community gardens or forests. To assess proximity to
such greenspace researchers could (a) include questions about the walking distance
to the nearest park in a questionnaire or (b) calculate the distance to the closest park
from a participant’s home. For that either the euclidean distance or a road network
analysis can be used. However, structural or legal access as non-disclosed or non-
spatial information is hard to obtain, especially for larger areas (Labib et al., 2020a).
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Greenspace accessibility is relevant when accounting for the instoration (building ca-
pacities) and restoration (restoring capacities) pathways (Markevych et al., 2017).

2.3 The role of Socioeconomic Status

The role as a significant covariate and effect modifier of individual and neighbourhood
level Socioeconomic Status (SES) in the context of health is widely recognized (Hajat
et al., 2021; Markevych et al., 2017; Scarpone et al., 2020; Walker et al., 2022; Walker
et al., 2019). Studies have shown that populations with low SES often live in areas with
higher pollution and lower greenspace exposures, and have worse health status (Hoffi-
mann et al., 2017; Schüle et al., 2017). Furthermore, groups with higher SES are more
likely to engage with greenspace farther away from their homes because of higher mo-
bility. In contrast, those with lower SES are generally less mobile and spend more time
in proximity to their homes, increasing the importance of their immediate greenspace
(Hoffimann et al., 2017; Maas et al., 2009). As a consequence the beneficial effects
of greenspace on health are strongest for those living in neighbourhoods with low SES
and those with low individual-level SES. Therefore, it has been suggested to include
SES as a covariate when analysing environmental effects on health (Markevych et al.,
2017).
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3 Methods

Data preparation and analysis were conducted using R (v.4.2) and the C++ program-
ming languages on a Linux system (AMD Ryzen 9 3900x CPU, 64GB DDR4). Code
and detailed documentation for all processing and modelling steps are available at
https://github.com/STBrinkmann/Bachelorthesis.

3.1 Participant Data

The PURE study is an ongoing global epidemiological study in 27 countries. For the
purpose of this study a subset of 1,607 participants recruited between 2006 and 2009
in Vancouver, Canada has been used. All participants gave their informed consent to
be part of the study and the study was approved by the local institutional review board
(Teo et al., 2009).

Self-reported participant variables comprised age, sex, household income range,
tobacco and daily alcohol consumption. In addition, the dietary choices and intake of
nutrients of each participant were assessed using the Alternative Healthy Eating Index
(AHEI), a nine-component index designed to assess dietary-based disease risk (Mc-
Cullough et al., 2002). Symptomatology for Major Depressive Episodes (MDE) was
assessed using an adapted Short-Form Composite International Diagnostic Interview
(CIDI-SF) for MDE (Gigantesco & Morosini, 2008; Kessler & Üstün, 2004). Partici-
pants have been asked if they had felt depressed, sad, or blue for two weeks or more
in a row in the past 12 months. If so, they have been further asked whether they ex-
perienced loss of interest, felt tiredness, had trouble sleeping or concentrating, have
gained or lost weight, or if they had thoughts about death. For each participant the
sum of positive answers has been taken and risk of MDE was classified if a participant
had a score of three or more. All participant variables are listed in Table 2. Further-
more, for each participant a robust residential address has been provided which has
been geolocated using the Open Street Map (OSM) Nominatim API (OpenStreetMap
contributors, 2017).

3.2 Environmental Data

Following the recommendation of previous research of using multiple greenspace met-
rics at different scales, this study utilised four different greenspace metrics commonly
used in the existing literature, (i) NDVI, (ii) Leaf Area Index (LAI), (iii) LULC, and (iv)
public parks (Fig. 3) (Labib et al., 2020b; Markevych et al., 2017). As this study fo-
cuses on the effects of greenspaces, bluespaces like lakes, rivers or the sea have
been removed from all greenspace metrics using a water mask derived from the high
resolution LULC raster. Both NDVI and LAI were derived from a cloud-free Sentinel-2
L1C satellite image (04.10.2015) which has been acquired through the EO Browser
platform. The L1C level (Top-Of-Atmosphere) already includes radiometric and ge-
ometric corrections but no atmospheric correction (Drusch et al., 2012). Therefore,

https://github.com/STBrinkmann/Bachelorthesis
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Figure 3 Greenspace metrics used in the study area. Blue areas represent terrestrial
water.

as part of the preprocessing, the Sentinel-2 image has been corrected to L2A level
(Bottom-Of-Atmosphere) using the Sen2Cor processor algorithm (Main-Knorn et al.,
2017) provided in the ESA SNAP toolbox.

The NDVI (Fig. 3a) characterises greenspace density and was calculated at 10 m
spatial resolution using the standard equation (Eq. 3.1):

NDV I =
NIR−RED

NIR +RED
(3.1)

where NIR refers to the near-infrared band and RED refers to the visible red wave-
lengths (Drusch et al., 2012). The LAI (Fig. 3b) characterises greenspace volume. It
measures the amount of photosynthetic area and levels of transpiration of the vege-
tation. These are key parameters for regulating ecosystem functions such as air tem-
perature regulation and air pollution reduction (Lin & Lin, 2010; Nowak et al., 2014).
The LAI has been calculated at 10 m spatial resolution using the biophysical processor
algorithm (Weiss et al., 2020) included in the ESA SNAP toolbox.
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Publicly available LULC data from 2014 has been acquired by Metro Vancouver
(2019) at 2 m resolution and was reclassified to a binary greenspace raster, where
tree canopy, shrub and grass represent green (value of 1) and other classes - including
non-photosynthetic vegetation - indicate not-green (value of 0). The binary LULC layer
(Fig. 3c) represents the overall presence or absence of greenspace. The LULC map
was created using RapidEye 5 m multispectral satellite imagery and LiDAR data.

An official, local dataset of parks was publicly available, however only for a small
sub-region of Vancouver. Therefore, polygon shapefiles of public parks of the complete
study area (Fig. 3d) have been acquired by OSM (OpenStreetMap contributors, 2017).
To account for edge effects data has been downloaded using a buffer of 1 km around
the study area. Small features (< 1 ha) and those without the term “park” in their name
have been removed, resulting in 456 parks with a mean (sd) size of 13.35 ha (58.42
ha).

To analyse the visibility of greenspace, a LiDAR derived Digital Surface Model
(DSM) and Digital Terrain Model (DTM) at 1 m resolution has been used for its proven
ability to represent the above-ground elements and its accuracy in estimating surface
visibility (Van Berkel et al., 2018). The DSM has been used to account for ground
surface objects like trees or buildings, and the DTM to represent the ground terrain.
Both elevation models are publicly available (Natural Resources Canada, 2019). In or-
der to compute network-based distance metrics, streets data has been acquired from
OSM using the R-package osmdata (Padgham et al., 2017). Road types not suitable
for walking were removed (i.e., motorways, trunks, and raceways). The network data
was topologically corrected and split into 20 metre-long segments using the R package
nngeo (Dorman, 2022).

To account for neighbourhood SES, data from the 2006 Canadian census has been
acquired from Statistics Canada at the regional level of Dissemination Area (DA) (the
smallest available census area with an average population of 400-800 residents). Fol-
lowing the recommendations of previous research, eleven SES variables have been
included in this analysis and are listed in Table 2 (Hajat et al., 2021; Walker et al.,
2022).

3.3 Greenspace Exposure Modelling

In this study, I combine three previously developed individual metrics of greenspace
exposure: availability, visibility, and accessibility (Section 2.2). Each of these exposure
metrics used various geographic data following a particular methodology. A raster map
of each metric has been calculated for the complete study area at 10 m resolution (3975
× 3479 cells). The following sections summarise the approaches taken for calculating
these three different types of greenspace exposure metrics.



12 Methods

3.3.1 Availability

Availability of greenspace is often measured by applying a simple 2D buffer around
the home location and aggregating the values within this area (e.g. mean NDVI of a 300
m buffer). When applied on a raster map, the neighbourhood of all cells will be sum-
marised using a moving window with a certain distance threshold. The Greenspace
Availability Exposure Index (GAVI) (Labib et al., 2020b) used in this study combines
three commonly used greenspace metrics (i.e. NDVI, LAI, and LULC) at five spatial
scales (i.e., 50, 100, 200, 300, and 400 m buffer distance) as a multi-scale, multi-metric
map. The three greenspace metrics represent different characteristics of photosynthet-
ically active vegetation (Section 3.2). Multiple spatial scales have been used as they (i)
represent different ecosystem functions, and (ii) account for scale dependent statistical
inference.

Multiple scales and the modifiable areal unit problem

Figure 4 Schematic illustration of the ef-
fects of multiple scales as differing buffer
size result in different aggregated values.

As of now, there is no consensus
what exact buffer size is suitable when
analysing mental illnesses. In a review
by Labib et al. (2020a), the researchers
found that when capturing the effects of
greenspace on physical health studies
used values of 300 - 600 m and 601 -
1000 m as the most and second most
used buffer distances, respectively. In the
context of mental health, relatively small
values of less than 300 m and 300 - 600
m as the most and second most used
buffer distances, respectively, have been
used. These mixed results in regards to
an “optimal” buffer distance seem intu-
itive as the selection of a buffer size may
represent different ecosystem functions.
For example, a smaller buffer (< 100 m)
may represent physical vegetation barri-

ers (e.g. scrub and trees) along the roadways, which may mitigate the effects of traffic
related air and noise pollution, whereas a larger buffer might better capture greenspace
that is being used for (recreational) physical activity (Markevych et al., 2017). As a
consequence, recent studies applied multiple buffer thresholds to analyse the effects
at distinct distance levels or even combined them in a multi-scale map (e.g. Browning
et al., 2019; Labib et al., 2020b; Su et al., 2019).
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The second argument for using multiple spatial scales is that they account for scale
dependent statistical inference. In geographical statistics, the Modifiable Areal Unit
Problem (MAUP) refers to the problem that analytical results are sensitive to the area
for which data are collected (Fotheringham & Wong, 1991; Openshaw, 1984). As a
consequence, variations in scale lead to differences in model outcomes, and as such,
different process understanding (Comber et al., 2022). As visualised in Fig. 4 using dif-
ferent euclidean buffer distances from a home location has different outcomes. While
a small buffer (red circle) only captures the greenspace close to the home location, a
medium size buffer (blue circle) additionally captures the urban structures visualised
as grey buildings. When using a large buffer distance (orange circle) the ratio between
urban features and greenspace gets approximately even. Furthermore, when compar-
ing multiple locations, the variance of the aggregated buffers decreases with increasing
buffer distance (Comber et al., 2022).

Lacunarity

In a recent paper Labib et al. (2020b) addressed the MAUP by introducing the
mathematical concept of lacunarity. Lacunarity literally refers to the gappiness or het-
erogeneity of a fractal or non-fractal image. When aggregating all cells in a raster map
the resulting raster will become increasingly homogeneous as the buffer distance in-
creases, and at a certain level all cells will have the same value. As a scale dependent
measure of heterogeneity, Dong (2000) introduced lacunarity for spatial heterogeneity
measurements in GIS. Based on the research of Plotnick et al. (1993), the author im-
plemented a lacunarity algorithm for binary raster images. Hoechstetter et al. (2011)
further improved lacunarity measurements for continuous images. In a recent paper,
Labib et al. (2020b) applied lacunarity on binary (i.e. LULC) and continuous (i.e. NDVI
or LAI) raster images to derive scale sensitive weights used in a buffer analysis to build
a multiple-exposure greenspace availability metric.

To compute lacunarity a sliding box algorithm that is based on previous works has
been used (Hoechstetter et al., 2011; Labib et al., 2020b; Plotnick et al., 1993). To
calculate lacunarity Λ(r) (“lambda”) for a spatial raster M (representing NDVI, LAI, or
LULC) with width W and length L, a square box of size r × r (initial value r = 2)
is placed upon the top-left corner of M . The box represents the neighbourhood of
a certain raster cell and r the distance value at which lacunarity is being calculated.
After that the box is shifted one cell to the right, so that the new box overlaps with the
previous one. First, the total number of boxes N [r] can be described as (Eq. 3.2):

N [r] = (W − r + 1)(L− r + 1) (3.2)

Next, the box mass S(r) for each box of size r is being calculated by taking the box
sum, or the range of all box-values, for binary or continuous raster, respectively. For
binary (i.e. LULC) images the number of boxes of size r containing box mass S are
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counted as n[S, r], and converted into a probability distribution Q(S, r) by dividing by
N [r] (Eq. 3.3):

Q(S, r) =
n[S, r]

N [r]
(3.3)

Next, the first and second moments of this probability distribution are estimated using
Eq. (3.4), (3.5), respectively:

Z(1) =
∑

S(r)×Q(S, r) (3.4)

Z(2) =
∑

S2(r)×Q(S, r) (3.5)

Finally, lacunarity Λ(r) can be calculated as (Eq. 3.6):

Λ(r) =
Z(2)

Z2(1)
(3.6)

If the raster is continuous (i.e. NDVI or LAI) the first and second moments can be
expressed as the mean E[S(r)] and variance V ar[S(r)] of the box mass values, re-
spectively (Plotnick et al., 1993). Lacunarity Λ(r) can now be described as (Eq. 3.7):

Λ(r) = 1 +
V ar[S(r)]

E2[S(r)]
(3.7)

Table 1 Box sizes and weights at five scales for the three greenspace metrics of both
sub-regions used for calculating the Greenspace Availability Exposure Index (GAVI).

Box size radius
(in metres)

Scale
[i]

Weighting- [w] (Lacunarity value)

NDVI LAI LULC
Vancouver
50 1 0.086 0.216 0.541
100 2 0.053 0.160 0.488
200 3 0.040 0.114 0.443
300 4 0.040 0.094 0.421
400 5 0.043 0.083 0.407
Surrey
50 1 0.144 0.185 0.297
100 2 0.071 0.119 0.260
200 3 0.037 0.078 0.231
300 4 0.031 0.062 0.220
400 5 0.030 0.054 0.216
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An established procedural method for interpreting lacunarity of an image is plotting
the natural logarithms of both Λ(r) and r (Hoechstetter et al., 2011). Fig. 5 visualises
three simulated elevation models with an extent of 100 × 100 pixels and values ranging
from 0 (green) to 1 (white). These three images describe different landforms. Fig. 5a
and 5b both show a continuous landscape without gaps, however, the hills in 5a have
a larger diameter (25 pixels) compared to 5b (10 pixels). Fig. 5c shows a simulated
landscape with large hills (25 pixels) but contains two gaps. As a consequence of
these holes, lacunarity decreases relatively slowly representing the high gappiness of
this image. Due to the small radius of the features in Fig. 5b, increasing the box size r

quickly leads to a homogeneous pattern of values and consequently to low lacunarity.

Multi-scale and multi-metric exposure

To combine the multiple greenspace metrics from multiple scales, first lacunarity
has been calculated for each metric and scale. The five scales 50, 100, 200, 300, and
400 m have been used as suggested by the literature (see Section 3.3.1). As visualised
in Fig. 3, there are large-scale variations in the landscape patterns within the study
area. Therefore, lacunarity has been calculated independently for both sub-regions -
Vancouver in the north-west, and Surrey in the south-east. The resulting lacunarity
values are listed in Table 1 and have been used as objective weights in a spatial decay
function, so that the reduced variance with increasing spatial scale is accounted for by
the corresponding lacunarity values. Lacunarity has been calculated using the spatLac
R package (Brinkmann, 2021) following the above mentioned algorithm. To aggregate
the raster images at the specific scales a standard focal function from the terra R
package (Hijmans, 2022) has been used.

Following the procedure of Labib et al. (2020b), combined multi-scale exposure
maps CMm for each greenspace metric m with m = NDV I, LAI, LULC were com-
puted as (Eq. 3.8):

CMm =

∑L
i=1(Mi × wi)∑L

i=1wi

(3.8)

L describes the number of scales (in this study L = 5), Mi the aggregated greenspace
metric m at scale i, and wi is the corresponding weight of the lacunarity analysis at
scale i (Table 1). The resulting maps are being called CMNDV I , CMLAI , and CMLULC .
Each of these combined multi-scale exposure metrics were reclassified into nine cate-
gories using the Jenks natural breaks classification method (Jenks, 1977), where the
lowest and highest exposure is represented as 1 and 9, respectively. Finally, the multi-
scale, multi-metric GAVI is calculated using (Eq. 3.9):

GAV I =
CMNDV I + CMLAI + CMLULC

3
(3.9)

In a last step, the GAVI of both sub-regions has been combined and again reclas-
sified using the Jenks natural breaks classification method, so that extremely low and
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extremely high levels of greenspace availability are represented as 1 and 9, respec-
tively. The final GAVI map has been masked with the study area and a water shapefile.

Figure 5 Simulated elevation models of different regularity and variability and their
corresponding lacunarity diagrams. All elevation models possess the same extent of
100 × 100 pixels and values ranging from 0 (green) to 1 (white) (Figure adapted from
Fig 3. in Hoechstetter et al., 2011).

3.3.2 Visibility

In this study, the Greenspace Visibility Exposure Index (VGVI) (Labib et al., 2021a)
has been implemented to represent eye-level visibility of greenspaces. The VGVI ex-
presses the ratio of visible greenspace to the total visible area an observer can see at
a specific location. For this metric, greenspace is represented using the LULC derived
binary greenspace layer and visibility is calculated from elevation data using viewshed
analysis. A point based viewshed describes a binary, circular raster with a fixed view-
ing distance (e.g. 300 m) representing visible and non-visible areas. The height of the
observer in its centre is derived using ground-level elevation from a DTM and the ob-
server height offset (e.g. 1.8 m). Height within the viewshed is evaluated using a DSM
to account for obstacles such as buildings. For each cell within the viewshed visibility
is calculated using a Line of Sight (LOS) algorithm. As visualised in Fig. 6, dichoto-
mous visibility (e.g., visible/not visible) along a LOS is evaluated with simple geometry.
Information about greenness is extracted from the binary greenspace raster. Finally,
all cells within the viewshed are weighted using a distance decay function to account
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for the reduced visual prominence of an object in space with increasing distance from
the observer (Labib et al., 2021a). The final VGVI expresses the proportion of visible
green cells to all visible cells with values ranging from 0 to 1, where 0 = no green cells
are visible, and 1 = all of the visible cells are green.

The VGVI has been calculated for the complete study area on a regular point-based
grid with 5 m intervals, except for when the point represents buildings or water. The
total number of observer locations was 17,329,345 and information about the land use
was extracted from the original LULC raster. After computation, the point grid has
been aggregated to a continuous raster with 10 m spatial resolution using an Inverse
Distance Weighting (IDW) interpolation algorithm. IDW is one of the most frequently
used methods in spatial interpolation. Its general idea is that the interpolated value of
any location is based on the values of known surrounding locations, assuming closer
values are more related than further values. IDW can be calculated as (Eq. 3.10)

Z =

∑n
i

zi
dβi∑n

i
1

dβi

(3.10)

where z is the value to be interpolated, n the number of nearest observer locations,
and zi and di their corresponding value and distance, respectively. β describes the dis-
tance power that determines the degree to which nearer points are preferred over more

invisible
no-green

visible
no-green

visible
green

invisible
green

Figure 6 Conceptualisation of the greenness visibility estimation. Dichotomous visi-
bility (e.g. visible, not visible) and intersected greenness values (e.g. green, no-green)
are evaluated along the line of sight (Brinkmann et al., 2022).
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distant points (Hartmann et al., 2018). To reduce computation time typically a maxi-
mum distance threshold D is used so that only the n nearest observer locations with
d ≤ D are taken into account. VGVI and the IDW interpolation have been computed
using the GVI R package (Brinkmann & Labib, 2022). The GVI R package uses an
implementation of the viewshed algorithm proposed by Brinkmann et al. (2022). The
authors improved computation time of the original VGVI algorithm by implementing a
novel prototyping approach making use of shared processing steps between multiple
observer locations. Furthermore, the GVI R package supports parallel computation on
multiple CPU cores. Parameters for the IDW have been configured through sensitivity
analysis with β = 2, n = 10, and D = 600m.

As a last step, the VGVI has been reclassified using the Jenks natural breaks classi-
fication method, so that extremely low and extremely high levels of greenspace visibility
are represented as 1 and 9, respectively, and masked with the study area and a water
shapefile.

3.3.3 Accessibility

The Greenspace Accessibility Exposure Index (GACI) (Labib et al., 2021b) has
been used to measure the access to public parks. It has been computed following a
three-step method: First, access points to public parks have been identified. Second,
for the complete study area walking distance has been calculated through network
analysis, accounting not only for the distance, but also the size of surrounding parks.
Finally, all values have been normalised to generate the GACI map. These steps are
explained in the following.

As public parks in urban environments are usually entered through streets or paths,
these access points have been identified as the first step. For that, the boundary of
the OSM based polygon shapefiles of public parks have been intersected with an OSM
road network. The geometric intersections of these layers indicate points, where parks
can be accessed through streets and paths. In the case that no street or path intersects
with a park boundary, the centroid of a park has been calculated, too. Both point layers
have been combined to build the access points (n = 4,559).

To determine the walking distance from a given location to a park, a network analy-
sis has been applied. The network analysis has been conducted using a local instance
of the OSRM routing engine (Luxen & Vetter, 2011). OSRM uses a lightweight im-
plementation of the Multi-Level Dijkstra algorithm (Delling et al., 2009) to enable fast
computations of large road networks. A regular point-based grid with 10 m intervals
has been generated for the complete study area, except for points that were located
inside parks (n = 4,839,747). For each location, walking distance to the access points
has been calculated. To reduce computation time, only the k nearest access points
of a given location have been selected using a k-nearest neighbour algorithm with
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k =
√
4559 (Karney 2017). Since not only the distance to a park, but also its size is

important for park usage, weights for distance (weight = 1.91) and log-scaled park size
(weight = 0.85) have been applied to determine the most attractive park at a given lo-
cation (Giles-Corti et al., 2005). Walking distance to the most attractive park has been
calculated for each location using OSRM.

Finally, the GACI raster map with 10 m spatial resolution has been filled and cells
that represent parks have been assigned the lowest walking distance values. To ac-
count for extremely high values, all values greater than the 90% decile Q0.9 have been
assigned to Q0.9. As a last step, the GACI has been reclassified using the Jenks natural
breaks algorithm, so that 1 represents extremely high, and 9 extremely low values of
travel time.

3.3.4 Composite Greenspace Exposure Index

Labib et al. (2021b) suggest combining the three exposure indices as a single Com-
posite Greenspace Exposure Index (CGEI). CGEI has been calculated as (Eq. 3.11):

CGEI =
GAV I × wGAV I + V GV I × wV GV I +GACI × wGACI

wGAV I + wV GV I + wGACI

(3.11)

with the greenspace exposure specific weight w. However, no recommendations are
given for calculating CGEI in the context of mental health. Therefore, to estimate op-
timal weights of each exposure metric all combinations of wGAV I , wV GV I , and wGACI

were calculated on a regular grid from 0 to 1 within an interval of 0.025. This resulted
in a total of 64,000 CGEI combinations. Each CGEI has been entered in a multivariate
logistic regression model (Section 3.6; Model 1) and the estimated Odds Ratio (OR),
and the three metric specific weights have been stored. To evaluate the combination
with the strongest effects on MDE symptoms, I then applied a Bayesian Additive Re-
gression Trees (BART) (Chipman et al., 2010) model with the estimated OR as the de-
pendent variable, and the three weights as independent variables. As demonstrated in
previous research (Scarpone et al., 2020), BART has great potential as an exploratory
tool when combined with Partial Dependence Plots (PDPs).

BART is an ensemble-of-trees method, such as random forests (Breiman, 2001)
and stochastic gradient boosting (Friedman, 2002). Tree-based regression models
have an advantage, as they can flexibly fit interactions and non-linearities. A sum-
of-trees model - such as BART or random forest - has an even greater ability in un-
derstanding these interactions than a single-tree model while also reducing the risk
of overfitting. However, BART differs from these two methods, as it uses an under-
lying Bayesian probability model (Kapelner & Bleich, 2016). One of the advantages
of using a Bayesian approach is that it computes Bayesian posterior distributions to
approximate the nonparametric model parameters. The priors aim to prevent a single
regression from dominating, thus reducing the risk of overfitting (Kapelner & Bleich,
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2016; Scarpone et al., 2020). To explore and visualise the marginal effects of each
weight on the OR of the CGEI I used PDPs. A PDP is a graphical output that illustrates
the marginal effect of an independent variable on the response variable (Friedman,
2002; Scarpone et al., 2020).

Model diagnostics, as well as the R2 of the BART model have been reported and the
final weights have been evaluated from the PDPs by selecting the weight of each metric
with the strongest effect on MDE symptoms. Finally, the CGEI has been calculated
using Eq. 3.11 with the optimal set of weights.

3.4 Neighbourhood Socioeconomic Status modelling

To account for the effects of neighbourhood SES on mental health, I used a previously
developed local SES model. As elaborated in recent analyses (Scarpone et al., 2020;
Walker et al., 2019), nearly all previous studies in the literature use either census unit
boundaries or simple buffer zones to characterise an individual’s local SES (Fuertes et
al., 2014; Gong et al., 2014). In a recent study by Walker et al. (2022), the authors pre-
sented a distance-weighted, road network-based model for quantifying neighbourhood
SES. In order to estimate each participant’s potential exposure to local SES, (i) age-
and sex-specific walkable zones were mapped around their residential address, and
(ii) a negative logit weighting function has been applied, so that the estimated effect of
SES decreases as distance from the home increases.
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Figure 7 Spatial weighting procedure to account for diminishing effects of distance
in which (a) road network based isochrones were used, (b) a non-weighted variable is
mapped over the census dissemination areas and the isochrones, and (c) the values
are weighted using a distance-decay function (Figure adapted from Fig 1. in Walker
et al., 2022).

Using age- and sex-specific walking speeds (average male–female difference =
0.13 km/h; Dewulf et al., 2012) each participant’s walkable areas was calculated with
a maximum of 20 minutes walking distance, in 2-minute increments. These walkable
areas (hereinafter referred to as “isochrones”) were computed using the A*-algorithm
(Fig. 7a) (Hart et al., 1968). This resulted in each participant having ten concentric
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isochrones, the sizes of which are a function of individual walking speed and road
network.

In order to account for the diminishing effect of SES as distance increases, a logit
function has been applied to weight each incremental isochrone, such that the influ-
ence of a variable decreases with increasing distance from the household, i.e., fea-
tures that are farther away have less influence than nearby features. A logit function
was selected as it heuristically approximates a suitable distance-decay function (Bauer
& Groneberg, 2016; Jia et al., 2019). The distance weighting of each isochrone has
been calculated using (Eq. 3.12):

Gt =


∫ rt
0 g(r)dr∫ rtmax

0 g(r)dr
, t = 1∫ rt

rt−1
g(r)dr∫ rtmax

0 g(r)dr
, t > 1

(3.12)

Each isochrone t is assigned a distance weight Gt, calculated as the integral of the
logistic distance decay function g(r) (Eq. 3.13)

g(r) =
1

1 + eb(r−m)
(3.13)

with b = 8 and m = 0.6, in the interval between the mean inner radius rt−1 and mean
outer radius rt of the isochrone (e.g. 2 to 4 minutes isochrone). This interval has been
normalised by the integral from 0 to the outermost isochrone boundary rtmax (i.e. 20
minutes isochrone). As visualised in Fig. 7, an isochrone can cover multiple census
areas. Therefore, the proportional weights of the census areas within an isochrone are
further defined as (Eq. 3.14)

Atj =
A(Cj ∩ It)

A(It)
(3.14)

as the area of the intersection with the census area Cj and the isochrone It, divided by
the area of the isochrone It. The weighted value of the SES variable xi in the census
area j is then defined as (Eq. 3.15):∑

t

(
Gt

∑
j

xij Atj

)
(3.15)

Fig. 7b illustrates the unweighted values of a SES variable and Fig. 7c its corre-
sponding proportional, distance adjusted weights. Neighbourhood level SES has been
calculated for all participants and for each SES variable listed in Table 2.

3.5 Index Derivation

Previous research often used a single index of socioeconomic deprivation to account
for local SES (e.g. Walker et al., 2022). To combine the distance adjusted neigh-
bourhood SES variables I used Principal Components Analysis (PCA) in accordance
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with recommendations in the literature (Hajat et al., 2021). PCA is an unsupervised
technique for dimensionality reduction in data that focuses on linear combinations of
the predictors. The new features, the principal components, attempt to account for as
much variation as possible in the original data (Ringnér, 2008). In this study the Van-
couver Socioeconomic Deprivation Index (VSDI) has been calculated from the SES
variables listed in Table 2. The features were centred and scaled and tested for Mea-
sure of Sampling Adequacy (MSA) using the Kaiser-Meyer-Olkin Index (KMO) and for
suitability using Bartlett’s test. Variables with low KMO were removed, resulting in a
final set of 9 SES variables. The predictors were entered into a PCA model using the
tidymodels framework (Kuhn & Wickham, 2020). The first principal component was
then rescaled to a range of -1 to 1 and used as the VSDI, where low values correspond
with socially deprived areas.

3.6 Statistical Modelling and Validation

Using individual-level MDE symptoms as a binary response variable, three sets of lo-
gistic regression models were run: (a) bivariate models with the PCA derived VSDI, the
three greenspace exposure indices, the CGEI, and all individual level control variables
(age, sex, household income range, AHEI score, smoking status and daily alcohol
consumption); (b) a fully-adjusted multivariable model using CGEI, VSDI, and all in-
dividual level control variables (Model 1); and (c) a semi-adjusted multivariable model
using CGEI, VSDI, and a subset of individual level control variables (age, sex, house-
hold income range) (Model 2). Furthermore, to analyse whether VSDI is attenuated
by individual-level household income, Model 1 was also calculated without household
income range.

The data has been split in stratified subsets for training (80%; n = 1,284) and testing
(20%; n = 323). The daily alcohol consumption variable contained missing values (n
= 240), therefore missing values have been imputed. As the feature contained high
outlier values, median imputation has been applied. To account for the class imbal-
ance (i.e., ratio of participants with MDE symptoms < 3 to MDE symptoms ≥ 3), an
oversampling approach has been used. When oversampling, the sample size of the
minority class is increased by replicating or synthetically generating samples (Hoens
& Chawla, 2013). In order to optimise this balance while reducing risk of overfitting,
I used the Synthetic Minority Oversampling Technique (SMOTE) algorithm (Liu et al.,
2019), which synthetically generates new samples by first identifying k (default k = 5)
minority-class nearest neighbours of a random minority-class participant. Finally, one
of the k neighbours is chosen and a new sample is calculated at a random location
along the vector between the two samples (Chawla et al., 2002). The oversampling
step has been applied only on the training subset.
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All three greenspace indices and the CGEI have been rescaled to a range of -1 to 1,
so that effect sizes can be compared to VSDI. OR with 95% Confidence Intervals (CI)
and p-values were reported for all models. In-sample statistics (sensitivity, specificity,
and accuracy) of the training subset were calculated through 10-fold cross-validation,
and compared to the out-of-sample statistics of the testing subset, to test for overfitting
and out-of-sample statistics were reported.
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4 Results

4.1 Sample Characteristics

Of the total 1,607 participants included in this analysis, 436 (27.1%) had three or more
MDE symptoms (Table 2). Participant median age was 52 (IQR 45, 60). Prevalence
was higher in women (292 [67.0%] vs 144 [33.0%] in men), and lower at household
income of more than CAD $45.000. Alcohol consumption, smoking and healthy diet
showed little differences in the study population. Participants with < 3 MDE symp-
toms showed higher values for all three greenspace exposure metrics, however the
differences were small.

Table 2 Summary statistics of the study population.

Variable < 3 MDE symptoms
(n = 1,171)

≥ 3 MDE symptoms
(n = 436)

Baseline characteristics
Age (years)

Mean (SD) 52.7 (9.6) 50.7 (8.9)
Median (Q1; Q3) 53.0 (45.0, 60.0) 51.0 (43.0, 57.0)

Sex
Male 607 (51.8%) 144 (33.0%)
Female 564 (48.2%) 292 (67.0%)

Household income range
> 90 k 560 (47.8%) 172 (39.4%)

65 k–90 k 244 (20.8%) 82 (18.8%)
45 k–65 k 177 (15.1%) 71 (16.3%)
30 k–45 k 102 (8.7%) 54 (12.4%)
20 k–30 k 50 (4.3%) 28 (6.4%)

< 20 k 38 (3.2%) 29 (6.7%)
AHEI score

Mean (SD) 40.6 (9.7) 39.6 (9.0)
Median (Q1; Q3) 40.8 (33.7, 46.9) 39.6 (34.0, 45.8)

Current/Former smoker
No 707 (60.8%) 256 (59.1%)
Yes 455 (39.2%) 177 (40.9%)

Daily alcohol consumption
Mean (SD) 1.1 (1.5) 1.1 (1.9)
Median (Q1; Q3) 0.6 (0.2, 1.2) 0.5 (0.2, 1.2)

Participants’ neighbourhood socioeconomic status
Lone parent families (%)

Mean (SD) 14.4 (4.2) 14.4 (4.7)
Median (Q1; Q3) 14.0 (12.1, 17.0) 14.3 (11.6, 17.9)

Private Dwellings - Owned (%)
Mean (SD) 66.5 (17.2) 64.2 (18.8)
Median (Q1; Q3) 66.3 (55.1, 81.6) 64.9 (50.2, 80.2)

Private Dwellings - Rented (%)
Continued on next page
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Table 2 – continued from previous page
Variable < 3 MDE symptoms

(n = 1,171)
≥ 3 MDE symptoms
(n = 436)

Mean (SD) 32.4 (16.2) 34.1 (17.4)
Median (Q1; Q3) 32.8 (18.2, 42.7) 34.4 (18.8, 46.6)

Labour force participation rate (%)
Mean (SD) 66.5 (7.0) 66.8 (7.3)
Median (Q1; Q3) 66.6 (62.1, 71.5) 66.9 (62.7, 71.7)

Unemployment rate (%)
Mean (SD) 5.5 (2.0) 5.4 (1.9)
Median (Q1; Q3) 5.4 (4.0, 6.6) 5.3 (3.9, 6.6)

Individual mean income
(CAD/1000)

Mean (SD) 38.7 (17.0) 37.5 (14.9)
Median (Q1; Q3) 35.0 (30.0, 41.0) 35.0 (30.0, 41.0)

Gov’t transfer payments (%)
Mean (SD) 8.4 (3.5) 8.5 (3.8)
Median (Q1; Q3) 8.1 (5.7, 10.8) 8.0 (5.6, 11.0)

Prevalence of low income (%)
Mean (SD) 12.2 (6.1) 12.1 (6.0)
Median (Q1; Q3) 11.5 (7.5, 16.0) 11.6 (7.9, 16.3)

Household median income
(CAD/1000)

Mean (SD) 62.2 (17.7) 60.9 (17.0)
Median (Q1; Q3) 59.0 (53.0, 68.0) 58.0 (51.0, 67.0)

Education - No degree (%)
Mean (SD) 15.2 (5.6) 15.1 (6.1)
Median (Q1; Q3) 15.1 (10.9, 18.8) 15.0 (10.5, 18.8)

Commute Walking/Bicycle (%)
Mean (SD) 8.4 (7.4) 9.0 (8.3)
Median (Q1; Q3) 5.3 (3.5, 12.3) 5.5 (3.5, 13.8)

Greenspace Exposure metrics
Availability (GAVI)

Mean (SD) 4.2 (1.3) 4.1 (1.3)
Median (Q1; Q3) 4.0 (3.0, 5.0) 4.0 (3.0, 5.0)

Visibility (VGVI)
Mean (SD) 4.8 (2.1) 4.6 (2.1)
Median (Q1; Q3) 5.0 (3.0, 6.0) 5.0 (3.0, 6.0)

Accessibility (GACI)
Mean (SD) 7.1 (1.3) 7.0 (1.4)
Median (Q1; Q3) 7.0 (6.0, 8.0) 7.0 (6.0, 8.0)
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4.2 Greenspace Exposure Metrics

Fig. 8 shows the result of the lacunarity analysis of Vancouver for calculating the GAVI.
Results for both sub-regions, Vancouver and Surrey, are reported in Appendix A.1.
Fig. 8a displays log-log lacunarity curves for all three greenspace metrics. Lacunarity
values were highest for small values in box size, and as the spatial units of the analysis
increased, lacunarity approached zero. This implicates that with increasing box size,
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Figure 8 Results of the lacunarity analysis for Vancouver. (a) log-log lacunarity
curves from all three greenspace metrics. For (b) NDVI, (c) LAI, and (d) LULC an
example raster has been mapped at original and aggregated scales and compared to
their corresponding lacunarity values.
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the variance in the resulting greenspace metric decreases. Fig. 8a also shows that the
binary LULC raster has the greatest heterogeneity. To better illustrate the changes in
lacunarity, the original maps of NDVI (Fig. 8b), LAI (Fig. 8c), and LULC (Fig. 8d) have
been compared to their corresponding aggregated maps at different box size values.
The figures illustrate more homogeneous maps with lower variance as the values of
r increase. The final GAVI map (Fig. A.2a) has been calculated using the scale and
metric specific lacunarity values as weights, as described in Section 3.3.1.

Maps of all three greenspace exposure indices are visualised in the Appendix A.2.
The visual examination of these indicates that GAVI (Fig. A.2a) and VGVI (Fig. A.2b)
have a similar broad spatial pattern. The values are generally lower in densely popu-
lated areas and higher in proximity to large bodies of vegetation like parks and agricul-
tural areas. However, VGVI shows greater variance and more details compared to the
aggregated GAVI. Furthermore, as buildings and trees block visibility, small differences
between the two exposure metrics can be seen, too. The GACI (Fig. A.2c) displays
a different spatial pattern, as its values are a function of parks and the road network.
GACI values are generally high in densely populated areas, as these promote good

CGEI

1 2 3 4 5 6 7 8 9

Figure 9 Map of the Composite Greenspace Exposure Index (CGEI). Terrestrial wa-
ter bodies are visualised in blue.
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access to parks. In contrast, the south and east of the study area show large patterns
of low access, as these regions are either used for agricultural purposes or connectivity
and availability of parks are low.

The final CGEI map has been calculated by combining the GAVI, VGVI and GACI
with metric specific weights. The estimated ORs of CGEI on MDE symptoms from all
64,000 possible weight combinations showed a mean (SD) of 0.95 (0.02), ranging from
0.92 to 0.99, where lower ORs indicate a stronger positive effect on MDE symptoms.
The BART model of CGEI OR and the three metric specific weights produced an R2

of 0.99 (p-value < 0.001). PDPs (Fig. A.3) of the three independent variables were
visually examined. The optimal set of weights of 0.35, 0.60, and 0.75 has been selected
for GAVI, VGVI and GACI, respectively. These absolute weights can be converted to
relative weights to report the proportion of each metric on the CGEI. The GACI had the
highest contribution to the CGEI with 44%, followed by VGVI (35%) and GAVI (21%).
The final CGEI is visualised in Fig. 9.

4.3 Index Derivation

The MSA from the KMO of two SES variables were low with 0.28 and 0.55 for labour
force participation rate and private dwellings - rented, respectively. After removing
these predictors, the overall MSA was 0.74, and Bartlett’s test results confirmed strong
non-sphericity (p < 0.001). The first principal component explained 40.1% of total
variance and was used as the VSDI. The factor loadings are listed in Table 3. Low
values of VSDI indicate socially deprived areas and high values describe DAs with
high income.

Table 3 Results of the Principal Component Analysis. Factor loadings of the first
principal component correspond to variable weights used for calculating the Vancouver
Socioeconomic Deprivation Index (VSDI).

Variable Factor loadings
(PC1)

Individual mean income 0.33
Household median income 0.26
Commute active 0.24
Private dwellings—owned 0.03
Lone parent families -0.33
Prevalence of low income -0.34
Unemployment rate -0.38
Education—no degree -0.39
Government transfer payments -0.48
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4.4 Regression Models

The results of the logistic regression models are shown in Table 4 and forest plots are
provided in Fig. A.4. When using the three greenspace variables in bivariate models,
the crude ORs showed positive effects on MDE symptoms, whereas GACI had the
lowest, and GAVI the highest effect size. Combining all greenspace variables in a
single index, the CGEI showed a significant and stronger positive association across
all models. In the bivariate model, the VSDI showed a non-significant, week negative
effect on MDE symptoms. When controlling for the other variables, VSDI exhibited a
consistent negative association across both multivariate models. However, the 95%
CIs were large, ranging from 0.94 to 1.83 in the fully-adjusted model (Model 1). When
not adjusting for individual-level household income, associations between VSDI and
MDE symptoms showed lower OR of 1.07 (0.78-1.48, p=0.672). Increased risk of MDE
symptoms were measured in women, and for participants with higher daily alcohol
consumption, as well as for persons who were smoking. A significant lower risk was
observed for higher household income, healthy eating and for increased age. The out-
of-sample performance of the fully-adjusted model (Model 1) showed an accuracy of
0.62, sensitivity of 0.61, and specificity of 0.62.

Table 4 Logistic models with Odds Ratio (OR) for Major Depressive Episodes symp-
toms ≥ 3, 95% CI, and p-values. Composite Greenspace Exposure Index (CGEI),
Vancouver Socioeconomic Deprivation Index (VSDI), Alternative Healthy Eating Index
(AHEI), Greenspace Availability Exposure Index (GAVI), Greenspace Visibility Expo-
sure Index (VGVI), Greenspace Accessibility Exposure Index (GACI).

Model 1 Model 2
Parameter OR

(bivariate)
OR
(multivariate)

OR
(multivariate)

CGEI 0.92
(0.86-0.98, p=0.010)

0.92
(0.86-0.99, p=0.032)

0.93
(0.87-1.00, p=0.040)

VSDI 1.05
(0.77-1.42, p=0.757)

1.31
(0.94-1.83, p=0.113)

1.29
(0.93-1.79, p=0.135)

Age
(5 year-interval)

0.87
(0.83-0.91, p<0.001)

0.83
(0.79-0.87, p<0.001)

0.83
(0.79-0.88, p<0.001)

Sex: female 2.56
(2.15-3.06, p<0.001)

2.71
(2.25-3.27, p<0.001)

2.51
(2.09-3.01, p<0.001)

Household
income range

0.87
(0.82-0.92, p<0.001)

0.84
(0.79-0.90, p<0.001)

0.84
(0.79-0.90, p<0.001)

AHEI Score 0.99
(0.98-1.00, p=0.013)

0.99
(0.98-1.00, p=0.004)

Current/Former
smoker: yes

1.05
(0.88-1.24, p=0.618)

1.13
(0.94-1.36, p=0.207)

Continued on next page
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Table 4 – continued from previous page
Model 1 Model 2

Parameter OR
(bivariate)

OR
(multivariate)

OR
(multivariate)

Alcohol:
drinks per day

1.01
(0.95-1.06, p=0.808)

1.06
(1.00-1.13, p=0.044)

GAVI 0.91
(0.86-0.97, p=0.006)

VGVI 0.95
(0.92-0.99, p=0.008)

GACI 0.99
(0.93-1.06, p=0.831)
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5 Discussion

5.1 Evaluation of Results

In this study I calculated the CGEI to estimate the associations between contact to na-
ture and depressive symptoms. The CGEI combines multiple greenspace metrics (i.e.
availability, visibility, and accessibility of greenspace) in a single combined exposure
index to account for multiple inter-twined pathways to health. As of now, no recommen-
dations about metric specific weights in the context of mental health were provided.
Therefore, I adopted an analytical approach to identify the relative importance of avail-
ability, visibility, and accessibility exposures in the context of mental health. I used
easily interpretable PDPs to estimate optimal weights of each greenspace metric. The
results of the analysis indicate that access to parks (GACI) had the strongest contri-
bution to the CGEI with 44%. Visibility of greenspace (VGVI) had the second highest
contribution with 35%, followed by overall availability of greenspace (GAVI; 21%). The
GACI and VGVI are both relevant when accounting for the restoration (restoring capac-
ities) and instoration (building capacities) pathways, the GAVI plays an important role
when accounting for mitigation pathways (reducing harm). The beneficial influences of
the restoration pathway on mental health are well understood and intuitive, as these
mechanisms have the potential to directly lower stress and restore cognitive function.
The instoration pathway describes mechanisms of greenspace with indirect positive
effects on mental health through facilitating social cohesion and encouraging physical
activity. The mitigation pathway has mixed and week effects on mental health and de-
scribes mechanisms that have the potential to reduce harming effects like air pollution,
high air temperature and noise through traffic. As GACI and VGVI had the strongest
contributions when calculating the CGEI, these findings emphasise that the results are
in line with the theoretical background.

Logistic regression models were used to analyse the effects of CGEI on risk of
MDE symptoms, while controlling for multiple individual-level variables, and neighbour-
hood SES. The results indicate that using the CGEI exhibited a more robust model
and higher effect sizes compared to the single greenspace exposure metrics. This
demonstrates the great potential of a combined greenspace metric to account for the
multiple inter-twined pathways from nature to health. Furthermore, in line with the hy-
pothesis that contact to nature is associated with improved health and wellbeing, the
results of this study demonstrate a significantly reduced risk of MDE symptoms with
increased greenspace. The values of the CGEI range from 1 to 9, where 9 represents
extremely high levels of greenspace exposure. The OR for CGEI of 0.92 (0.86-0.99,
p=0.032) indicates that increasing the CGEI by 1 reduces the risk of MDE symptoms
by 8%. Moreover, an increase of 2 may have effects as strong as increasing the house-
hold income range by one category (e.g. increasing the household income range from
$30.000 - $45.000 to $45.000 - $65.000).
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The SES has been estimated for each participant using a previously developed and
tested methodology. The results of the logistic regression models do not fit with the
theory that high neighbourhood SES has a positive effect on mental health. A possible
explanation might be that the relationship between neighbourhood socioeconomic de-
privation and risk of MDE symptoms may be attenuated by individual-level household
income (Neally et al., 2022). When not accounting for individual-level household in-
come, the VSDI showed lower negative effects on MDE symptoms and the ORs were
similar to the crude OR and showed a large range of 95% CIs. Furthermore, these
results might be explained by recent findings that other physical and social neighbour-
hood environment factors that may relate to depressive symptoms are needed when
accounting for neighbourhood SES (Neally et al., 2022).

5.2 Limitations

This study has several limitations. First and foremost, the CGEI has been calculated
by combining the three single exposure metrics GAVI, VGVI, and GACI with metric
specific weights. Therefore, the interpretation of the OR of CGEI may be non intuitive.
However, using the metric specific relative weights may propose an intuitive approach
for communicating the relative importance of each single exposure metric for mental
health.

Second, this study used an adapted Short-Form Composite International Diagnos-
tic Interview (CIDI-SF) for MDE, consisting of seven questions to assess self-reported
MDE symptoms. While previous studies have validated the performance of this ques-
tionnaire (Gigantesco & Morosini, 2008), more refined questionnaires might improve
the reliability of the results.

Third, the results of this study were constrained by temporal differences between
the PURE study and environmental data. In the PURE study participants were re-
cruited between 2006 and 2009, however environmental data was not available for this
time period. The LULC raster is based on LiDAR data from 2014, and the NDVI and
LAI were calculated from a Sentinel 2 satellite image from 2015. These temporal dif-
ferences may lead to different measurements of environmental exposures compared
to the baseline date. However, it can be expected that the urban environment of Van-
couver did not change drastically between 2006 and 2015.

Forth, when estimating access to parks, Giles-Corti et al. (2005) suggest to account
for distance, size, and attractiveness of parks. While this study allowed for the first two
qualities and therefore improves the estimation of GAVI by Labib et al. (2021b), attrac-
tiveness of parks has not been taken into account. While attractiveness of parks is
typically estimated through local inspections, future studies might alternatively include
a diversity score of remote sensing derived land cover.
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Finally, the generalisability of the results is limited by the geographic boundaries of
the study, as the analysis focuses on the urban and peri-urban regions of Vancouver,
Canada. However, the PURE study is a large-scale epidemiological study in 17 low-,
middle-, and high-income countries around the world (Teo et al., 2009). Therefore,
future research might expand the demonstrated methodology to investigating associa-
tions between multiple greenspace exposures and symptoms of depression for multiple
communities and countries around the world.
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6 Conclusion

To the authors best knowledge, this is the first study to apply the CGEI on individual-
level data. I used this novel index to estimate associations between contact to na-
ture and depressive symptoms. As contact with nature is invariably integrated into a
complex web of health determinants, it is clear that multiple pathways are likely to be
engaged simultaneously and affect one another. The multiple greenspace exposure
framework differs from traditional single exposure metrics in that it can objectively and
holistically combine multiple inter-twined greenspace exposure types. As such it is
more likely to account for the complexity of multiple pathways. In this study, I com-
bined three exposure metrics, (i) GAVI, (ii) VGVI, and (iii) GACI. However, as of now,
no recommendations regarding the metric specific weights to parameterise the CGEI
in the context of mental health have been given. Therefore, I provide a methodol-
ogy for estimating these metric specific weights by using easily interpretable PDPs.
The results implicate that access to parks has the greatest contribution on CGEI, fol-
lowed by greenspace visibility and overall residential greenspace availability. These
results support findings that the restoration (restoring capacities) and instoration (build-
ing capacities) pathways are important in the context of mental health. Furthermore,
logistic regression models were used to investigate associations between GACI and
symptoms of depression, while controlling for multiple individual-level variables, and
neighbourhood SES. The results of this study demonstrate significantly reduced risk of
depressive symptoms with increased greenspace. Furthermore, combining the three
exposure metrics in a single index, the CGEI showed a stronger positive association
with reduced risk of MDE symptoms. Future research should incorporate the CGEI as
it has great potential to account for the complexity of multiple pathways and to further
investigate specific effect sizes of the different exposure metrics.
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Appendices

A Figures

A.1 Lacunarity Analysis

Surrey

Vancouver

1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ln(r)

ln
(l
ac
u
n
ar
it
y)

Legend

LAI

LULC

NDVI

Figure A.1 Lacunarity diagrams for both sub-regions of the study area - Vancouver
in the north-west, and Surrey in the south-east.

Results of the lacunarity analysis from Section 3.3.1 for both sub-regions, Van-
couver and Surrey. Fig. A.1 displays log-log lacunarity curves for all three greenspace
metrics. The broad pattern is similar in both regions and lacunarity values were highest
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for LULC. However, Surrey generally showed lower values indicating lower variance,
which might be explained by more homogeneous large-scale patterns (e.g. agricul-
tural areas in the south-east) and a suburban character compared to the urban centre
of Vancouver.

A.2 Greenspace Exposure Metrics
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Figure A.2 Maps of the greenspace (a) availability, (b) visibility, and (c) accessibil-
ity exposure, and the Composite Greenspace Exposure Index (CGEI) (d). Terrestrial
water bodies are visualised in blue.
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A.3 Partial Dependence Plots
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Figure A.3 Partial Dependence Plots (PDPs) of the three metric specific weights (a)
GAVI, (b) GACI, and (c) GACI. The x-axis shows the value of the weight variable and
the y-axis its partial effect on the estimated MDE symptoms OR. Lower values of partial
effect indicate a stronger positive effect on MDE symptoms.
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A.4 Regression Models

Alcohol: drinks per day
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Figure A.4 Forest plots showing significant effects for both semi-adjusted and
fully adjusted multivariable logistic models. Composite Greenspace Exposure Index
(CGEI), Vancouver Socioeconomic Deprivation Index (VSDI), Alternative Healthy Eat-
ing Index (AHEI).
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